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1 Introduction

Graph Theory are used for solving a multitude of complex and comprehensive problems in
modern life. These applications encompass areas such as economics, management science, sales
and marketing, information transmission, and transportation planning. Graph theory is also
beneficial in defining problems and determining structural relationships (Agnarsson & Greenlaw
(2007)).

Graph problems are widespread in computer science. Hundreds of interesting computational
problems are expressed in graphs. Examples of these problems include the Hamiltonian circuit,
Eulerian circuit, Traveling Salesman Problem, and others. After addressing these problems
below, a new concept: ‘Circuit Covering the Graph’ is defined, and an algorithm is proposed to
find this circuit.

The article first recalls the necessary concepts related to graphs, touches upon the Traveling
Salesman Problem, provides concepts related to the Convex Hull, and showcases the two best-
known algorithms. Subsequently, concepts related to the Circuit Covering the Graph are defined,
and an algorithm is designed to find this circuit. Finally, a comparison between the Circuit
Covering the Graph and the Convex Hull of the Vertex Set of the Graph is presented, and their
applications are discussed.

2 Computational Geometry

Although geometry has been studied since ancient times, the development of algorithms for
geometric problems is considered relatively recent. Computational Geometry is a branch of
Computer Science that focuses on algorithms solving geometric problems (Preparata & Shamos
(1985)).

196

https://orcid.org/0000-0001-5431-8506


F. NURIYEVA: CIRCUIT COVERING THE EUCLIDEAN COMPLETE GRAPH

In modern engineering and mathematics, Computational Geometry finds applications in
various fields such as Computer Graphics, Robotics, VLSI Design, Computer-Aided Design,
Molecular Modeling, Metallurgy, Manufacturing, Textile Design, Forestry, and Statistics.

The input to a problem in Computational Geometry is typically given as a set of geometric
objects, such as a set of points, a set of line segments, or an ordered set of vertices of a polygon
in counterclockwise order. The output often answers questions related to geometric objects,
such as whether lines intersect or whether there is a new geometric object, like the convex hull
(the smallest convex polygon envelope), associated with a set of points.

In this article, we will address a Computational Geometry problem in the plane, specifically
in two-dimensional space. We will represent each object’s input as pi = (xi, yi), where xi, yi ∈ R,
with a set of points p1, p2, p3, . . . pn. For example, an n-sided polygon P will be represented by
the array p1, p2, p3, . . . , pn, indicating the order in which its vertices appear along the boundary
of P .

3 Graphs

A Graph has a finite set V called the Vertex set. Let there be a relation (a, b) ∈ R on V that
is symmetric and non-reflective. Let E be the collection of 2-element subsets of V . In other
words, for elements a and b in V , (a, b) ∈ E. Here, the set E is called the Edge set, and each
element is referred to as an edge of the graph.

A graph is represented as G(V,E) or simply denoted as G.
If (a, b) ∈ E, it is said that the two elements a and b of the V set are connected.
A finite graph is depicted with shapes. The Vertices are represented by points, and the

edges connecting the vertices are shown with lines.
Let v be any vertex in the graph G. The degree of the vertex v is the number of edges

adjacent to v.
If every edge is labeled, it is called a labeled/weighted graph.
A walk in which each vertex is used once is called a path.
A path from the vertex v0 to vn in a graph is expressed as an array (v0, e1, v1, . . . , vn−1, en, vn),

consisting of (n+ 1) vertices and n edges. In other words, a graph with end vertices of degree 1
and inner vertices of degree 2 is called a path graph. The path graph with n vertices is denoted
by Pn.

A closed walk with all vertices of degree 2 and the number of vertices n ≥ 3 is called a cycle
graph. The number of edges of a contour graph with n vertices is n, and this graph is denoted
Cn.

Graphs with an edge between every pair of distinct vertices are called complete graphs. A
complete graph with n vertices is denoted as Kn.

An Euler Path in a graph G is a closed walk that includes all edges of G exactly once. A
closed Euler path is called an Euler circuit. If a graph contains at least one Euler Path, it is an
Euler graph.

If there is a path visiting each vertex only once, it is called a Hamiltonian path. A
Hamiltonian circuit in a graph is a circuit that passes through each vertex once. If a graph
contains a Hamiltonian circuit, it is a Hamiltonian graph (Agnarsson & Greenlaw (2007)).

Applications of Hamilton circuits include interesting problems such as the Traveling
Salesman Problem.
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4 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem
studied in the fields of Operations Research and Computer Science. The TSP aims to find the
shortest or least costly tour that visits each of the n known points (cities, locations, or nodes)
exactly once, where the distances between them are known. In graph theory, the TSP can
be defined as finding the least costly Hamiltonian Circuit in a weighted graph (where nodes
represent cities, edges represent the roads between cities, and weights represent the cost or
length of the roads) (Nuriyeva (2023)).

This problem has a wide range of applications, including determining routes for vehicles
distributing products to customers based on demands from one or more depots, airport routing
for airplanes, and determining the locations of base stations for GSM operators in the fields of
transportation, logistics, and communication. Additionally, given that the Traveling Salesman
Problem forms the foundation for many other problems, developing efficient solution methods
for this problem is crucial.

5 Convex Cover of the Vertices of the Given Graph

The convex combination of two distinct points, p1 = (x1, y1) and p2 = (x2, y2), is any point
p3(x3, y3) for some 0 ≤ a ≤ 1, where x3 = ax1 +(1−a)x2 and y3 = ay1 +(1−a)y2. Additionally,
it can be expressed as p3 = ap1 + (1− a)p2. Intuitively, we can say that p3 is any point on the
line passing through p1 and p2, and p1 and p2 are either on or between p3 on that line (Artigas
et al. (2010)).

The Convex Hull of a set of points Q is denoted as CH(Q) and is the smallest convex
polygon such that every point in Q lies either on the boundary or inside P (Buzatu & Cataranciuc
(2015)). Indirectly, we can think of every point in Q as a nail protruding from the surface.
Therefore, the Convex Hull is like a tight rubber band that envelops all the points. Figure 1
illustrates the set of V vertex points of a given graph and its convex hull.

Figure 1: Convex Cover of the V Vertices of the Given Graph

We can demonstrate two algorithms that calculate the convex hull of a set of n points
(Kirkpatrick & Seidel R. (1986)). Both algorithms employ a technique known as “rational
sweep” which means they output the corners of the convex hull in the counterclockwise direction.
The first of these algorithms is Graham’s Scan, which runs in O(nlgn) time (Graham (1972)).
The second is Jarvis’s March, which operates in O(nh) time, where h represents the number of
corners of the convex hull (Jarvis (1973)). As shown in Figure 1, each corner of CH(Q) is a
point within Q.
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6 Graph Covering Circuit

Assuming a graph G(V,E) where the set of V vertex points of the graph lies within a rect-
angle ABCD with coordinates in the plane [A(xl, yd), B(xl, yu), C(xr, yu), D(xr, yd)], and the
coordinates of the vertex points vi = (xi, yi) are given as xi, yi ∈ R (Figure 2).

Figure 2: Rectangle Containing the Vertices of the Given Graph

We will refer to graphs of this type, given in the plane, as Euclidean Graphs, similar to
the Traveling Salesman Problem (TSP).

In practice, the graphs encountered in TSP generally take the form of such graphs. As it is
known, the graphs of TSP are Complete Graphs (Figure 3).

Figure 3: Complete Graph of Given Vertices

We will refer to the leftmost point (the point with the smallest first x-coordinate) in the set
V as the Left End Point, and denote this set of points as L(V) (Figure 4).

We will call the second y-coordinate smallest among the Left End Point the Lower Left End
Point and denote it as Pdle.

Similarly, among the Left End Points, the one with the largest second y-coordinate will be
called the Upper Left End Point, and denoted as Pule.

We will refer to the rightmost point (the point with the largest first x-coordinate) in the set
V as the Right End Point, and denote this set of points as R(V) (Figure 4).

The second y-coordinate smallest among the Right End Points will be referred to as the
Lower Right End Point, denoted as Pdre.

Similarly, among the Right End Points, the one with the largest second y-coordinate will be
called the Upper Right End Point, and denoted as Pure.
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We will refer to the bottom most point (the point with the smallest second y-coordinate) in
the set V as the Down End Point, and denote this set of points as D(V) (Figure 4).

The first x-coordinate smallest among the Down End Points will be referred to as the Lower
Left Down End Point, denoted as Plde.

Similarly, among the Down End Points, the one with the largest first x-coordinate will be
called the Lower Right Down End Point, denoted as Prde.

We will refer to the topmost point (the point with the largest second y-coordinate) in the
set V as the Upper End Point, and denote this set of points as U(V) (Figure 4).

The first x-coordinate smallest among the Upper End Points will be referred to as the Upper
Left Upper End Point, denoted as Plue.

Similarly, among the Upper End Points, the one with the largest first x-coordinate will be
called the Upper Right Upper End Point, denoted as Prue.

Figure 4: Sets of Graph Endpoints

As seen in Figure 4, R(V ) is a single point, so Pure and Pdre are the same.
NOTE 1: For some graphs, some of the sets mentioned above may be the same set, or one

of these sets may be a subset of the other. When the number of elements in any of these sets is
1, the upper-lower or right-left elements will be the same (Figure 5).

(a)
(b)

Figure 5: Examples showing when endpoints are set the same

In Figure 5(a), point 1 represents both the Left End Point and the Upper End Point; there-
fore, in this case, L(V ) = U(V ) = {1}. Also, point 4 represents both the Right End Point and
the Down End Point; hence, R(V ) = D(V ) = {4}.

In Figure 5(b), point 1 represents both the Left End Point and one of the Down End Points;
thus, in this case, L(V ) ∩D(V ) = {1}. Similarly, point 3 represents both the Right End Point
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and one of the Down End Points; therefore, R(V ) ∩ U(V ) = 3.

The Set of End Points SE(V) for the set of Vertex Points V will be as follows:

SE(V ) = L(V ) ∪R(V ) ∪D(V ) ∪ U(V )

If P (xdl, ydl) ∈ (V −SE(G)) satisfies the following condition, we will refer to it as the Down
Left Limit Vertex, and denote this set of vertices as DL(V) (Figure 6):

V ∩ [(xl, yd), (xl, ydl), (xdl, ydl), (xdl, yd)] = P (xdl, ydl)

Note 2: Here and below, the notation [(xl, yd), (xl, ydl), (xdl, ydl), (xdl, yd)] represents the co-
ordinates of the End Points, showing a rectangle with coordinates (xl, yd), (xl, ydl), (xdl, ydl), (xdl, yd).

If P (xul, yul) (V − SE(G)) satisfies the following condition, we will refer to it as the Upper
Left Limit Vertex, and denote this set of vertices as UL(V) (Figure 6):

V ∩ [(xl, yul), (xl, yu), (xul, yu), (xul, yul)] = P (xul, yul)

If P (xur, yur) ∈ (V −SE(G)) satisfies the following condition, we will refer to it as the Upper
Right Limit Vertex, and denote this set of vertices as UR(V) (Figure 6):

V ∩ [(xur, yur), (xur, yu), (xr, yu), (xr, yur)] = P (xur, yur)

If P (xdr, ydr) ∈ (V −SE(G)) satisfies the following condition, we will refer to it as the Down
Right Limit Vertex, and denote this set of vertices as DR(V) (Figure 6):

V ∩ [(xdr, yd), (xdr, ydr), (xr, ydr), (xr, yd)] = P (xdr, ydr)

Figure 6: Displaying the Boundary Vertices of the Graph

Thus, the Set of Edge Points of the Vertex Points V consists of the union of the Set of End
Points ∂V and the Set of Limit Points (Figure 7).

∂V = SE(V ) ∪DL(V ) ∪ UL(V ) ∪ UR(V ) ∪DR(V )
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Figure 7: Set of Edge Points of Graph

In Figure 7, the Edge Points are highlighted in blue.
V − ∂V forms the set of Internal Points of the Graph.
The ∂G Circuit passing through the Edge Points of the set of Vertex Points V composes the

Circuit Covering the Graph (Figure 8).

Figure 8: Circuit Covering the Graph

7 Circuit Covering the Graph Algorithm

1. All vertex points of the graph are first sorted in ascending order based on
their first coordinates, and then, if there are vertex points with the same first
coordinates, they are sorted based on their second coordinates:

A1(x1, y1) ≺ A2(x2, y2) ≺ . . . ≺ An(xn, yn)

xi < xj ⇒ Ai(xi, yi) ≺ Aj(xj , yj) (1)

yi < yj ⇒ Ai(x, yi) ≺ Aj(x, yj)

In other words, the vertex points of the graph are initially sorted in ascending order based
on their first x-coordinate. During this sorting, those with the same first x-coordinate will
be placed consecutively within a range in this array. Then, within each of these ranges,
the elements are sorted based on their second y-coordinate.

2. The End Points of the graph are identified, and from these End Points, the
bottom, top, right, and left points are determined (Figure 9).
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2.1. To select the Left End Points (L(V )), the points with the smallest first x-coordinate
in array (1) are chosen. These points may be one or more. If there is only one point,
it becomes both the Left Bottom End and Left Upper End. If these points are two or
more, they are consecutively connected to form the Left Side of the Circuit Covering
the Graph.

2.2. To select the Right End Points (R(V )), the points with the largest first x-coordinate
in array (1) are chosen. These points may be one or more. If there is only one point,
it becomes both the Right Bottom End and Right Upper End. If these points are
two or more, they are consecutively connected to form the Right Side of the Circuit
Covering the Graph.

2.3. To select the Upper End Points (U(V )), the points with the largest second y-coordinate
in array (1) are chosen. These points may be one or more. If there is only one point,
it becomes both the Upper Left End and Upper Right End. If these points are two
or more, they are consecutively connected to form the Upper part of the Circuit
Covering the Graph.

2.4. To select the Bottom End Points (D(V )), the points with the smallest second y-
coordinate in array (1) are chosen. These points may be one or more. If there is only
one point, it becomes both the Bottom Left End and Bottom Right End. If these
points are two or more, they are consecutively connected to form the Bottom part of
the Circuit Covering the Graph.

Figure 9: Finding the endpoints of the graph

3. Starting from the Left End Points, first, the Left Down and Upper Limit Points
of the Graph are identified and connected. Then, starting from the Bottom
and Upper Right End Points, the Bottom Right and Upper Limit Points of
the Graph are identified and connected.

3.1. To determine the Left Down Limit Points of the Graph (DL(V )), the following steps
are taken (Figure 10):
Let xdle be the first element in the array (1) first coordinate. Assume xdl = xdle, and
ydl = ydle.
Let xi > xdl be the smallest first coordinate after xdl in this array. The following
procedure is applied to the interval starting with xi in the array (1):
Consider the element with the first coordinate x2 and the smallest second coordinate
yif in the array (1). This element becomes the first element of the interval reserved
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for xi in the array (1). If this coordinate is less than ydl, A(xi, yif) becomes one of
the Left Down Limit Points of the Graph, and A(xdl, ydl) is connected to A(xi, yif),
and xdl = xi and ydl = yif are assumed. Otherwise, A(xi, yif ) becomes an internal
point of the Graph.
In the following steps, the smallest x(i + 1) after the first coordinate xi, then the
smallest x(i+1)+1 after xi+1, and others are selected from the array (1), and the above
procedures are applied for appropriate intervals.
These procedures are completed when xdl = xlde and ydl = ylde.

(a) (b) (c) (d)

Figure 10: Examples showing when endpoints are set the same

3.2. To determine the Left Upper Limit Points of the Graph (UL(V )), the following steps
are taken (Figure 11):
Let xule be the first element in the array (1) first coordinate. Assume xul = xule, and
yul = yule.
Let xi > xul be the smallest first coordinate after xul in this array. The following
procedure is applied to the interval starting with xi in the array (1):
Consider the element with the first coordinate xi and the largest second coordinate
yie in the array (1). This element becomes the last element of the interval reserved
for xi in the array (1). If this coordinate is greater than yul, A(xi, yie) becomes one of
the Left Upper Limit Points of the Graph, and A(xul, yul) is connected to A(xi, yie),
and xul = xi and yul = yie are assumed. Otherwise, A(xi, yie) becomes an internal
point of the Graph. In the subsequent steps, the smallest x3 after the first coordinate
in the array (1), then the smallest x4 after x3, and so on, are selected, and the above
operations are performed for appropriate intervals.
These procedures are completed when xul = xule and yul = yule.

(a) (b) (c)

Figure 11: Combining the graph by determining the Upper Left Boundary points

3.3. To determine the Upper Right Boundary points of the graph (UR(V )), the following
steps are performed:
Let’s assume xur = xure, and yur = yure.
xi < xur, and in this array, xur is the largest first coordinate after xi. For the interval
starting with xi in the (1) array, the following process is carried out:
An element is selected in the array (1) with the first coordinate xi and the largest
second coordinate yie. This element becomes the last element of the interval allocated
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for xi in the array (1). If the coordinate is greater than yur, A(xi, yie) becomes one
of the Upper Right Boundary points of the graph, and A(xur, yur) is merged with
A(xi, yie), and xur = xi, and yur = yie are accepted. Otherwise, A(xi, yie) becomes
an internal point of the graph.
In the subsequent steps, the following steps are performed for suitable intervals by
selecting the largest x(i+1) after first coordinate xi, then the largest x(i+1)+1 after
x(i+1), and so on:
These procedures are completed when xur = xrue and yur = yrue.

(a) (b) (c) (d)

Figure 12: Combining the graph by determining the Upper Right Boundary points

3.4. To determine the Lower Right Boundary points of the graph (DR(V )), the following
steps are performed:
Let’s assume xdr = xdre, and ydr = ydre.
xi < xdr, and in this array, xdr is the largest first coordinate after xi. For the interval
starting with xi in the array (1), the following process is carried out:
An element is selected in the array (1) with the first coordinate xi and the smallest
second coordinate yie. This element becomes the first element of the interval allocated
for xi in the array (1). If the coordinate is less than yur, A(xi, yie) becomes one of the
Lower Right Boundary points of the graph, and A(xdr, ydl) is merged with A(xi, yie),
and xdr = xi, and ydr = yie are accepted. Otherwise, A(xi, yie) becomes an internal
point of the graph.
In the subsequent steps, the following steps are performed for suitable intervals by
selecting the largest x(i+1) after the first coordinate xi in the array (1), then the
largest x(i+1)+1 after x(i+1), and so on:
These procedures are completed when xdr = xrde and ydr = yrde. This completes the
Circuit Encompassing Algorithm for the graph.

(a) (b) (c) (d)

(e) (f) (g)

Figure 13: Combining the graph by determining the Lower Right Boundary points
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8 Conclusion

The complexity of the proposed algorithm is O(nlgn). This algorithm can be further developed
to find the Convex Hull of the Graph. The Graph Covering Circuit always remains within the
Convex Hull of the Graph and forms a tighter envelope. The common parts of the Convex Hull
and the Graph Covering Circuit may exist, meaning they can intersect. The Vertex points of
the Graph are present both on the Convex Hull and on the Covering Circuit (Figure 14).

Figure 14: Convex Cover of Graph and Covering Circuit

In Figure 14, the Graph Covering Circuit is shown with solid lines, and the non-intersecting
parts of the Convex Hull of the Graph with the Covering Circuit are indicated with dashed lines.

The Graph Covering and the Convex Hull of the Vertex Points Set in the Graph can be used
as a stage in solving various Graph Problems, such as the Traveling Salesman Problem (Nuriyev
et. al. (2018)), and in Geometric Design Problems for the future works.
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